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The McMillan-Mayer (MM) free energy per unit volume of solution AMM, is employed as a gene
rating function of the MM system of thermodynamic quantities for solutions in the state of osmo
tic equilibrium with pure solvent. This system can be defined by replacing the quantities G, T, P, 
and m in the definition of the Lewis-Randall (LR) system by AMM, T, po. and c (Po being the 
pure solvent pressure). Following this way the LR to MM conversion relations for the first 
derivatives of the free energy are obtained in a simple form. New relations are derived for its 
second derivatives. 

Computed thermodynamic properties of electrolyte solutions in the McMillan-Mayer 
theoryl are obtained in terms of the MM system of excess quantities! and pertain 
to solutions in the state of osmotic equilibrium with pure solvent. On the other 
hand experimental data are usually reported in terms of the Lewis-Randall sys
tem2 - 4 for solutions under atmospheric pressure. In order to compare computed 
and experimental data, relations are needed between excess quantities defined in the 
two different systems and referring to solutions under different pressures, the so called 
LR to MM conversions (or corrections)S,6. As the MM theory yields only the values 
of excess quantities, one can understand why the corresponding absolute quantities 
have not been found so far. As a consequence, however, for one thing the derivation 
of the LR to MM corrections is somewhat cumbersome and the corrections alone 
are rather complicated6.7 , for another an uncertainty is reported as to their use 
in some cases 7 • It is the purpose of this paper to present a generalized definition 
of the MM system, based on the MM free energy8, to elucidate the nature of the 
quantities encountered in it, and to derive exact conversion relations up to the second 
derivatives of the free energy. 

Lewis-Randall System 

In the thermodynamics of electrolyte solutions systems of quantities with asymmetric 
solvent-solute relation are used. The one most commonly employed is the Lewis
-Randall system, associated with the molality as a composition variable. Its element
ary version2 •3, hitherto in use, had been developed, largely in connection with single 
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electrolyte solutions, in the early part of this century, however, a consistent defini
tion of the system was given only in 1960 by Friedman4 • For our purposes we de
fine this rationalized LR system by 

a) The generating function, G = G(T, P, m), where G is the Gibbs energy ofsolu
tion per unit mass of solvent and m is the vector of solute molalities. All other 
thermodynamic functions in this system are introduced upon partial differentiating G 
with respect to the LR independent variables4, e.g., Jl.i = oG/omi is the chemical 
potential of ith solute component (i = 1, ... , sand s is the number of solute com
ponents). 

b) The standard state of solution for given (T, P), 

Jl.tLR = lim [Jl.i - RTln (mJmO)], i = 1, ... , s, (1) 
m ... O 

where m = m 1 + ... + m. is the total solute molality and mO = 1 mol kg- 1 is the 
standard molality. 

c) The reference state of solution for given (T, P, m), 

(2) 

Excess quantities are defined as XE = X - Xid, where X and X1d are the correspond
ing absolute and reference quantities, respectively. 

We note that the total differential of the Gibbs energy in the LR system does not 
include solvent quantities explicitly: 

dG = I' dm - S dT + V dP . (3) 

Here I' is the vector of the chemical potentials of sclute components, S is the entropy 
and V is the volume of solution in the LR system (i.e., both S and V refer to solu
tion containing a unit mass of solvent). 

McMillan-Mayer System 

An arbitrary state of a solution can be described using the variables (T, 110' c), where 
110 is the chemical potential of solvent in the solution and c is the vector of the amount
-of-substance concentrations of solute components. Once the solution is in the MM 
state, i.e. in the state of the osmotic equilibrium with the pure solvent, there is a cor
responding state of the pure solvent, (T, 1'0)' with a pressure Po. It is then possible 
to describe the solution state with the variabless (T, Po, c). A solution in the MM 
state is best characterized with the McMillan-Mayer free energy8, which will refer 
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to a unit volume of solution throughout this paper, 

AMM = ep - n. (4) 

Here 17 is the osmotic pressure which is a measure of the solvent "escaping tendency,,2 
and which indeed has the role of the solvent partial specific free energy in the MM sys
tem. As AMM is a function of T, Po, and e and (aAMM/Deh,po = p, its total dif
ferential will read: 

dAMM = p de - SMM dT + VMM dPo , (5) 

where the symbols - SMM and VMM are chosen to denote the partial derivatives 
of AMM with respect to Tand Po, respectively. 

It is instructive to compare Eqs (3) and (5). We can define the MM system simplY 
by replacing the quantities G, T, Po, and m in the definition of the LR system given 
above by the quantities AMM , T, Po, and e. Thus the generating function in the MM 
system is the MM free energy. AMM = AMM(T, Po, e), and the standard and reference 
states are given by 

,uf,MM = lim [,ui - RTln (c;/CO)] , i = 1, "', s (6) 
c ... o 

(7) 

for given (T, po) and (T, Po, e), respectively, where c is the total solute concentration 
and CO = 1 mol dm - 3 is the standard concentration. It can easily be proved that 
this definition of the MM system is, as far as the excess quantities are concerned, 
equivalent to the earlier definition 1, according to which the excess Helmholtz enagy 
AE , is given by 

(8) 

where x = elc and TIE = n - RTc is the excess osmotic pressure. It is evident that 
the excess Helmholtz energy defined by Eq. (8) is identical with the excess MM free 
energy from the present definition of the MM system, 

The formal definition of the MM system given above is quite sufficient for further 
purposes. Yet it seems appropriate to show how the functions VMM and SMM can 
simply be interpreted in terms of the usual osmotic experiment. Consider a vessel 
divided into two parts with a semipermeable partition, illustrated in Fig. 1. At first 
the vessel contains only pure solvent (Fig. 1 a) and the pressure on both sides of the 
partition is Po. Now suppose that another substances are added into part I and the 
volume of the vessel is varied in such a manner that the pressure on the pure solvent 
in part II is still equal to Po. Provided the solution in part I has a unit volume, the 
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volume change is just VMM. This volume change is given by the difference between the 
volume of the solution (at pressure P = Po + n) and that of the pure solvent 
(at pressure Po) in the amount in which it is in the solution. In terms of LR quantities 
it can be written as VMM=j (V - V~)IV, where Vis the solution LR volume at P and V; 
is the pure solvent specific volume at Po. A similar equation holds also for the func
tion SMM : SMM = (S - s~)lv. Both equations can easily be proved when starting 
with the relation of the difference of the Helmholtz energies of the two systems 
illustrated in Fig. 1 to the MM free energy. These equations can also be obtained 
by the more formal way presented in the next part. 

Lewis-Randall to McMillan-Mayer Conversion 

In order to compare theoretically computed and experimental data one needs con
version relations between the excess quantities in the MM system at pressure P = 

= Po + n and those in the LR system for solution with the same molality, but at 
pressure Po. For simplicity the following notation will be used: Absolute LR quantities 
referring to the pressure P are denoted by the common symbols (X). Absolute LR 
quantities for the pressure Po are denoted with the primed symbols (X'). Standard, 
reference, and excess LR quantities will refer to the pressure Po only, but will not be 
primed. Under integrals ower pressure the common symbol (X) designates an LR 
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FIG. 1 

Illustration of the quantity VMM. a) The system contain pure solvent only. b) Another substances 
are added into part I 
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quantity as a function of the pressure. Now we can write for total quantities: 

and after a simple rearrangement, 

X~M/C - X~R/m = [(X~dR - X~)/m - X~M/c] + 

+ (l/m) r (aX/Op)LR dp + [XMM/C - (X - X~)/m] , Jpo 

795 

(9) 

where X~ is a specific quantity of pure solvent at Po. An equation formally identical 
with (9) holds also for solvent quantities (osmotic pressure). In this case however the 
first term on the right is zero. A similar relation is found for partial molar solute 
quantities: 

X~.MM - XrLR = (X:?LR - X:?MM) + fP (aXdap)LR dp + (Xi •MM - Xi)' (10) 
Po 

In £qs (9) and (10) the subscript LR indicates the constancy of the other LR variables. 
The first terms on the right-hand sides of Eqs (9) and (10) arise from the dif

ferences between the definitions of the standard and reference states in the LR 
and MM systems. They are determined by pure solvent properties at Po only, except 
for the free energy and entropy where, because of the ideal mixing terms, the volume 
of the solution at P must also be known. They can easily be derived using Eqs (1), 
(2), (6), and (7). We note that 

X:?LR - X:?MM = (XLdR - X~)/m - X;JM/C • 

The second terms on the right-hand sides of Eqs (9) and (10) represent the differences 
between the corresponding LR quantities at P and Po and they deserve no comments. 
Finally, the third terms are given by the differences between the corresponding MM 
and LR absolute quantities at P (i.e., for the same solution). Equations needed for 
their derivation are developed in Appendix. 

In Eqs (9) and (10) the differences between excess quantities in the MM and LR 
systems are expressed in terms of LR quantities and the osmotic pressure. The osmotic 
pressure, considered as an MM quantity, cannot be written explicitly as a function 
of LR quantities. It is calculated from the LR osmotic coefficient, <PLR' solving the 
equation 

fPo + n 
RTm<pLR = Vo dp , 

. Po 

(11) 

where Vo is the partial specific volume of solvent. 
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Conversion relation for the excess free energy derived from Eq. (9) ·is identical 
with that derived earIiers. The conversion relations for the first derivatives of the 
free energy are equivalent to those given ins, they are however much simpler. As 
examples we give here exact relations for activity coefficients, excess volumes, and 
excess entropies. 

In (YI.MM/Yi.LR) = In (V/V~) + (l/RT)f P Vi dp 
Po 

(12) 

V~M/C - V~R/m = RTxo - fP K dp 
Po 

(l3) 

S~M/C - S~R/m = RTrxo - fP E dp - R In (V/V~) 
., Po 

(14) 

Here Xo is the isothermal compressibility coefficient of pure solvent at Po, K = 

= (aV/ap)LR is the isothermal compressibility of solution, 1X0 is the cubic expansion 
coefficient of pure solvent at Po, and E = (aV/aT)LR is the cubic expansion of solu
tion. Third terms of Eqs (9) and (10) are given in Appendix for several second 
derivatives. 

The author wishes to thank Professor H. L. Friedman for valuable correspondence relating to 
the topic 0/ this paper. 

APPENDIX 

Relations for the third terms on the right-hand sides of Eqs (9) and (10), i.e., the differences 
between the corresponding MM and LR quantities of solution at P = Po+ n,can be obtained 
on partial differentiating the equation for the free energy, 

AMM = (G - G~)/V- n, (AI) 

where Gg is the specific Gibbs energy of pure solvent at Po and all the other quantities refer 
to the pressure P. To be able to do that we need to know the partial derivatives of LR quantities 
with respect to the M M independent variables. For an LR quantity X = X(p) we can write 
in a condensed form: 

(ax/aT) (1 ap/aT Om/aT) (ax/aT) ax/apo = 0 ap/apo am/apo ax/ap 
ax/ac MM 0 op/oc om/ac MM ax/am LR 

(A2) 

where the subscripts MM and LR indicate that the matrix elements are partial derivatives with res
pect to the MM or LR independent variables. To derive expressions for the elements of the trans
formation matrix in (A2) we employ the equality 

(A3) 
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and the Gibbs-Duhem equation in the MM system, 

(A4a) 

which can be rewritten in terms of LR quantities as 

0= mdp + (S - S~)dT+ V;dPo - VdP. (A4b) 

When (T, C) is constant, the only LR variables that do not remain constant are P and m (the 
others are T and x in this case). The changes of these two variables are not independent. It 
follows from (4b): 

We denote 

Then using (A3) we get 

(om;/oPO)MM = -(K/Vo) mj'ltp (A5) 

'It = V~/Vo 
p 1 - (K/Vg) m (oGO/om)LR 

(A6) 

and 

In these equations Xo (X = G, V, ... ) is a partial specific quantity of solvent at pressure P. 
The MM derivatives with respect to temperature are obtained in a similar way: 

(om;/oT)MM = (m;/Vo) [E - K(oP/oT)MM] 

-Sj,MM == (op.l/oT)MM = -Sj + Vj(OP/OT)MM + 

+ (m/Vo) (OP.I/om)LR [E - K(oP/oT)MM] 

SO,MM == (OP/OT)MM = 

= 'ltp[(So - S~)/V~ - (E/VoV;) m(cG%m)LR] , 

(AB) 

(A9) 

(AID) 

where So - So can be replaced by (Ho - Ho)/T. Finally, for the derivatives with respect to the 
concentration, Cj' of jth solute component we get: 

(omt/oCj)MM = bljV + (V/Vo) ~mi - (K/Vo) mi(oP/otCj)MM (All) 

(Ollk/OCj)MM = V(Oflk/omj)LR - (V/Vo) ~(oGO/omk)LR + 

+ [Vk + (K/Vo) (oGO/omk)LR] (cP/OCj)MM (AI2) 

(oP/OCj)MM = -'ltp(V/V;) [(oGO/omj)LR + (Vj/Vo) m(oG%m)LR] . (AI3) 
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Now equations for other second derivatives of the free energy can be derived: 
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